详情介绍
山西半导体气路改造
仪器仪表使用过程中担心的问题是什么?莫过于仪器故障,如同大家在电脑前奋力工作,电脑突然死机黑屏,辛苦白费,全部重来…仪器故障也是如此,使用过程中出现故障,不仅耽误使用,而且延误时间。近几个月以来,东方中科技术服务部陆续收到多台数字万用表6514出现故障。针对客户送修的故障现象,我们进行了整理总结,发现主要故障有两点,如下:故障一6514的COMM口与电脑通讯异常,底噪不断上升,但6514面板显示正常。
实验室供气方式是采用将气瓶安置在仪器设备的旁边,危险气体的气瓶放置在气瓶柜内。排气采用直接排放到实验室或是通过简易的管道排放到窗外。在实验室的发展过程中,随着实验室仪器设备的增加,实验室内经常是密布着各种各样的管道和气瓶。这样处理既造成了非常大的安全隐患,也不美观。
实验室的很多设备的运行都需要各种各样的气体供应,同时也会产生废气。如何既安全又方便地解决供排气问题,也是一直以来困扰实验室工作人员的问题之一。
正确的实验室供排气的解决方案是把实验室的供排气看作一个系统。这个系统要考虑到安全性、便利性、日常实验室的管理、气瓶的更换等问题,同时要重点考虑实验室今后的发展,对于特殊气体还要考虑特殊的技术解决方案。
(一)设计标准
1、《工业金属管道设计规范》[GB50316-2000(2008版)];
2、《工业金属管道工程施工及验收规范》(GB50235-1997);
3、《现场设备、工业管道焊接工程施工及验收规范》(GB50236-1998);
4、《乙炔站设计规范》(GB50031-1991);
5、《氢氧站设计规范》(GB50177-2005);
6、《氧气站设计规范》(GB50030-1991);
7、《压缩空气站设计规范》(GB50029-2003);
8、《深度冷冻法生产氧气及相关气体安全技术规程》(GB16912-2008)。
(二)技术要求
1、气瓶间:
①气瓶间应采用300mm厚实体墙,安装防爆门,设置泄爆窗;
②室内电器设备均应具备防爆功能;
③室应安装排气扇,时刻保持良好的通风状态;
2、供气系统要求采用两级减压的方式进行供气,供气汇流排次减压,气体由15Mpa减压到1.5Mpa以下,再输送到各用气实验室,二级减压器安装在各用气实验室或用气点,方便统一控制通风柜或仪器用气的输入压力,用气终端配有中压球阀和压力指示表,二级减压器对压力进行调整(0.01Mpa),得到稳定的压力,可以满足仪器对不同使用压力的要求,一、二级减压器均配有压力表,可实时显示当前压力;
3、采用双侧汇流排半自动方式不间断供气,充分满足实验室的使用要求,更换气瓶时,可通过安装在高压软管下面的卡套进行气瓶更换;
4、氢气和乙炔属于易燃气体,应设计气体泄露探测报警装置,并安装阻火器,防止明火回流,易燃与助燃气体敷设应保证足够的安全距离。
山西半导体气路改造
DC-DC模块因为其效率高,体积小广泛应用于各种电子产品中,在其研发、生产和检验验收阶段都需要测试其主要的技术指标,如源效应,负载效应和准确度等。在测试时,其需要一个可调的直流电源提供激励。以源效应为例,其测试示意图如所示。DC-DC源效应测试示意图以电科43所研制的HTR28系列DC-DC模块为例,其输入直流电压范围为16V?40V。在测试其源效应时,就需要将可调直流电源的输入从16V调节到40V,通常是采用旋转编码器来调节可调直流电源的电压输出的,在这么宽的范围内调节,调节需要一定的时间,不能直接从一个电压跳变到另一个电压,采用程控直流电源作为可调直流电源就能够很好解决这个问题。
(三)工程用材
1、管道、球阀、卡套和三通等为316L不锈钢,减压器为高纯气体减压器(不锈钢阀芯),高压软管(连接钢瓶和汇流排)为不锈钢波纹管,在高压软管的进气端,配置单向阀,可以防止更换钢瓶时,软管内的气体外泄,同时避免外界的空气混入气路之中;
2、管道系统:所有的气体管道选用BA级别的316L不锈钢管,在管路上有个过滤杂质和水分的净化装置,使气体在流通过程中不至于被管道系统污染,保证气体的纯度,同时要有明确标示,指示气体的流向;
3、管道的连接:汇流排、终端部分采用卡套连接,便于减压器和阀门的维护管理;
4、终端:在每台仪器之前,配置截止阀和二级减压器(每种气体配置一个)。截止阀用于控制每一个气路的开启与关闭;在仪器需要调整和维修时,能停止任何的仪器的气体供应,减压器用于显示和调整终端的压力。
(四)其它
1、气体管路每间隔1.5m采用管码支架固定,并根据气体管路弯曲的直径,设置合适的支架位置;
2、整个管路安装完毕后,对整个系统做压力测试。参照《工业金属管道工程施工及验收规范》,管路系统在保压24小时后,压力无下降为合格。
山西半导体气路改造
一个反激式电源可分别从一个48V输入产生两个1A的12V输出。理想的二极管模型具有零正向压降,电阻可忽略不计。变压器绕组电阻可忽略不计,只有与变压器引线串联的寄生电感才能建模。这些电感是变压器内的漏电感,以及印刷电路板(PCB)印制线和二极管内的寄生电感。当设置这些电感时,两个输出相互跟踪,因为当二极管在开关周期的1-D部分导通时,变压器的全耦合会促使两个输出相等。该反激式简化模型模拟了漏电感对输出电压调节的影响。