详情介绍
陈工189-6519-7730
优点缺点
1. 电机旋转的角度正比于脉冲数;
2. 电机停转的时候具有最大的转矩(当绕组激磁时);
3. 由于每步的精度在百分之三到百分之五,而且不会将一步的误差积累到下一步因而有较好的位置精度和运动的重复性;
4. 优秀的起停和反转响应;
5. 由于没有电刷,可靠性较高,因此电机的寿命仅仅取决于轴承的寿命;
6. 电机的响应仅由数字输入脉冲确定,因而可以采用开环控制,这使得电机的结构可以比较简单而且控
制成本;
7. 仅仅将负载直接连接到电机的转轴上也可以极低速的同步旋转。
8. 由于速度正比于脉冲频率,因而有比较宽的转速范围。
折叠缺点
1. 如果控制不当容易产生共振;
2. 难以运转到较高的转速。
3. 难以获得较大的转矩
4. 在体积重量方面没有优势,能源利用率低。
5. 超过负载时会破坏同步,高速工作时会发出振动和噪声。
技术发展
国内外对细分驱动技术的研究十分活跃,高性能的细分驱动电路,可以细分到上千甚至任意细分。目前已经能够做到通过复杂的计算使细分后的步距角均匀一致,大大提高了步进电机的脉冲
分辨率,减小或消除了震荡、噪声和转矩波动,使步进电机更具有“类伺服”特性。
对实际步距角的作用:在没有细分驱动器时,用户主要靠选择不同相数的步进电机来满足自己对步距角的要求。如果使用细分驱动器,则用户只需在驱动器上改变细分数,就可以大幅度改变
实际步距角,步进电机的“相数”对改变实际步距角的作用几乎可以忽略不计。
解决方法
一、改变方向时丢脉冲,表现为往任何一个方向都准,但一改变方向就累计偏差,并且次数越多偏得越多;
二、初速度太高,加速度太大,引起有时丢步;
三、在用同步带的场合软件补偿太多或太少;
四、马达力量不够;
五、控制器受干扰引起误动作
六、驱动器受干扰引起;
七、软件缺陷;
有以下几点解决方法:
1)一般的步进电机驱动器对方向和脉冲信号都有一定的要求,如:方向信号在第一个脉冲上升沿或下降沿(不同的驱动器要求不一样)到来前数微秒被确定,否则会有一个脉冲所运转的角度与
实际需要的转向相反,最后故障现象表现为越走越偏,细分越小越明显,解决办法主要用软件改变发脉冲的逻辑或加延时。
2)由于步进电机特点决定初速度不能太高,尤其带的负载惯量较大情况下建议初速度在1r/s以下,这样冲击较小,同样加速度太大对系统冲击也大,容易过冲,导致定位不准电机正转和反转
之间应有一定的暂停时间若没有就会因反向加速度太大引起过冲。
3)根据实际情况调整被偿参数值,(因为同步带弹性形变较大,所以改变方向时需加一定的补偿)。
4)适当地增大马达电流,提高驱动器电压(注意选配电机驱动器)选扭矩大一些的马达。
5)系统的干扰引起控制器或驱动器的误动作,我们只能想办法找出干扰源,降低其干扰能力(如屏蔽,加大间隔距离等),切断传播途径,提高自身的抗干扰能力,常见措施:①用双纹屏蔽线
代替普通导线,系统中信号线与大电流或大电压变化导线分开布线,降低电磁干扰能力。
②用电源滤波器把来自电网的干扰波滤掉,在条件许可下各大用电设备的输入端加电源滤波器,降低系统内各设备之间的干扰。
③设备之间最好用光电隔离器件进行信号传送,在条件许可下,脉冲和方向信号最好用差分方式加光电隔离进行信号传送。在感性负载(如电磁继电器、电磁阀)两端加阻容吸收或快速泄放电
路,感性负载在开头瞬间能产生10~100倍的尖峰电压,如果工作频率在20KHZ以上。
6)软件做一些容错处理,把干扰带来影响消除
9D3U
9D3.6U
9D5U
9D6U
9D7.5U
9D9U
9D10U
9D12.5U
9D15U
9D18U
9D20U
9D25U
9D30U
9D36U
9D50U
9D60U
9D75U
9D90U
9D100U
9D120U
9D150U
9D180U
9D200U
9D250U
9D300U
9D360U
9D36N
9VD15AH
9VD18AH
9VD20AH
9VD25AH
9VD30AH
9VD36AH
9VD50AH
9VD60AH
9VD75AH
9VD90AH
9VD100AH
9F30H
9F50H